Respiratory Epithelial Cells in Innate Immunity against Respiratory Viruses

David Rodriguez-Mier, Ernesto Torres-Lopez, Mario C. Salinas-Carmona and Adrián G. Rosas-Taraco
Department of Immunology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico

Abstract

Epithelium is considered the first barrier defense of the organism due to its contact with the environment. The respiratory epithelium is important in the innate immune response. Respiratory viruses are the leading cause of acute respiratory infections being the respiratory epithelia (RE) their primary target. These epithelial cells have the capacity to limit viral replication and to activate the immune response. RE recognize viruses through pattern recognition receptors expressed in the cell membrane or in the cytoplasm. After recognition, RE produces a variety of molecules such as defensins, nitric oxide, cytokines, chemokines, and interferons in response to viral infection. The early antiviral state by RE is crucial to control viral replication. This review analyzes the role of the RE cells as innate immunity mediator and discusses the potential use of this knowledge in the development of future mucosal therapies and vaccination.

Key words: Respiratory epithelia. Innate immunity. Respiratory viruses. Cytokines. Interferons.

Introduction

Respiratory epithelia (RE) have been recognized as the first line of defense of the respiratory tract. Upper and lower airway epithelia are morphologically similar but are different in their response to pathogens. Studies of different viral particles that infect human nasal and bronchial epithelial cells have demonstrated differences in susceptibility, due to innate immune system components. The susceptibility to different bacteria and/or viruses in distinct locations of the respiratory tract is an example of the interaction of pathogens, a situation that may determine the immune response or the development of disease. The upper and lower airways have different susceptibility to respiratory pathogens. The human rhinovirus (HRV) commonly infects the upper respiratory airway, but the lower respiratory airway is more susceptible to this virus.

There are known factors involved in the progression of respiratory disease due to viral infection of the RE. It has been reported that RE cells respond in different ways to infection and coinfection with the most common viral agents. The controversy regarding the distinct environmental factors and physiological conditions involved in the infectious process is still unclear. Understanding the factors and conditions that lead to resolution of the infection or disease development has an immediate clinical impact, not only in treatment but also in vaccine development.
Table 1. Respiratory epithelial cells innate immunity response to viral infection

<table>
<thead>
<tr>
<th>Viral particle</th>
<th>Airway location</th>
<th>RE response to stimulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRV</td>
<td>LRT</td>
<td>Overexpression of RIG-1, MDA5, CXCL10, RANTES, IP-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production of IL-6, IL-8, Viperin, IL-1α, IFN-β, IFN-α/β, IL-12</td>
</tr>
<tr>
<td>IAV</td>
<td>LRT</td>
<td>Overexpression of IFN-β, IL-6</td>
</tr>
<tr>
<td>RSV</td>
<td>LRT, LRT</td>
<td>Expression: SOCS-1, SOCS-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production: IFN-β, SOCS-1, SOCS-3, IL-2, IL-12</td>
</tr>
<tr>
<td>hMPV</td>
<td>LRT, URT</td>
<td>Expression of type I IFNs, RIG-1, MDA-5, RANTES, IL-8, IFN-β</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activation of RIG-1, STAT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production of IL-1β, IL-6, IL-12, TNFα</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>LRT</td>
<td>Overexpression of CXCL10, CXCL11, type I IFNs, IL-1α, ISG65, IAS1, Mx 1, IL-29, CXCL10, IL-6, IL-18, RANTES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production: CCL5, FGF, CXCL10, IFN-β, IFN-λ, IL-1α, IL-6, IL-8, PDGF</td>
</tr>
</tbody>
</table>

Disease Onset: from Acute to Complicated/Chronic Respiratory Disease

Acute respiratory infections (ARIs) are the most frequent acute infections worldwide; viruses are the most prevalent cause ARIs. The most common causes of respiratory disease are HRV, influenza virus, coronavirus (CoV), human metapneumovirus (hMPV), adenovirus (AV), bocavirus (BoV), enterovirus (EV), parainfluenza, and respiratory syncytial virus (RSV), as summarized in table 1. Patients infected with these viruses show similar clinical manifestations as (1) common cold, (2) flu-like illness, or (3) severe acute respiratory syndrome. The host immune response may be a determinant of the severity of disease and not necessarily the viral load. ARIs are not limited to one etiologic agent (monoinfection) since coinfection has frequently been detected in patients with ARIs. This phenomenon has also been reproduced in experimental models. In case of coinfection, two or more viruses have been identified in patients with ARIs. Currently, there is controversy about which agent initiates the infection, if a virus facilitates or limits coinfection; moreover, if virus coinfections can determine clinical outcome. The evidence shows that there is no correlation between the number of etiologic viruses involved and the clinical outcome, but the disease tends to be complicated and severe. Additional evidence suggests that patients with a coinfection develop a complicated and prolonged disease with longer hospital and intensive care unit (ICU) stays.

Coinfections and clinical manifestations

Viral coinfections are a common finding in patients with ARIs; it varies from 20% to 60% according to different studies. A study demonstrated that severe disease is associated with coinfection, being the HRV and influenza A virus (IAV) the most common viral agents coinfesting those patients; however, more studies are needed because there is an underdiagnose of coinfections.

In the United States of America, respiratory viruses’ cause 52% of respiratory infections, 21% of this are by IAV H1N1, and 20% of cases are coinfected with HRV. The IAV and HRV are among the most common respiratory viruses to cause disease; the coinfection among these viruses is the most common reported finding. A factor that may promote coinfection is overexpression of the ICAM-1 receptor in IAV infection.

The respiratory viruses have a tropism to the upper or lower airway. The clinical manifestations and disease severity are determined by the response of RE and the immune system. Complications of coinfection may
include stay in ICU36, respiratory failure37, “cytokine storm”38, and even death30. Allergies39, asthma40, genetics, lifestyle, diet, age, and smoking are risk factors associated with severe disease, as demonstrated in patients infected with HRV32, RSV41, and IAV13 infections.

Viral agents, entry receptors

The respiratory viruses have a genome composed of ssRNA, except for AV and BoV, which have a dsDNA genome42-44. These viral particles express proteins on their surface that interacts with molecules present in RE (Fig. 1A). The viruses enter the epithelial cell and initiate their replication cycle. RE membrane has ICAM-1145, sialic acid (\(\alpha_2,3\)-galactose and \(\alpha_2,6\)-galactose)13,46,47, and toll-like receptors (TLRs) are involved in viral entry. It is unclear if, after the first viral entry, a restriction or promotion of another viral agents invasion will be present43,48. The RE response may be modified after infection as demonstrated in vitro studies49.

![Figure 1. Schematic representation that summarizes the interaction between respiratory epithelium and respiratory viruses. (A) Molecules involved in virus entry. (B) TLRs, MDAS, RIG-1, and NLRP3 interact with viral genome. (C) Signaling pathway induced by respiratory viruses in epithelial cell. (D) Interferon, cytokines, chemokines, and other molecules that mediate the antiviral response.](image-url)
Entry receptors in RE cells may vary among viruses; HRV uses ICAM-1, the very low-density lipoprotein receptor, and the low-density lipoprotein receptor. IAV interacts with sialic acid at the surface of epithelial cells, through the hemagglutinin protein. The RSV F protein interacts with the heparin sulfate present in the cell membrane. hMPV entry mechanism is still unclear. However, there is evidence that protein F is important for the virus to attach to the host cell. In human cells, CoV (HCoV-NL63 strain) uses angiotensin-converting enzyme 2 to enter into the cell. MERS-CoV and SARS-CoV use dipeptidyl-peptidase 4 as an entry receptor in RE. CoV-HKU1 and HCoV-OC43 bind to O-acetylated sialic acid and N-Acetyl-9-O-acetylneuraminic acid, respectively. BoV entry receptors are unknown, and the mechanism used to infect host cell has not been described yet. In figure 1A, we summarize the viruses and the receptors used for entry.

The RE Immune Response to Viral Infections

RE sensing and activation

RE has three major molecules to detect viral nucleic acids: TLR, retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA-5). The detection of viral agents is critical to establish an antiviral state mediated by TLR3, TLR7, or TLR9 in the endosome. This recognition activates nuclear factor-kappa B (NF-κB), IRF3, and IRF7 pathways to promote inflammatory and interferon (IFN) response (Fig. 1B and C). This response to the viral genome has been demonstrated for IAV, RSV, and HRV. The RIG-I-like receptor detects the 5’ triphosphate of the viral RNA, particularly sensing a ssRNA of negative polarity. RIG-I has been shown to be involved in the antiviral response to influenza, hMPV, and RSV. MDA-5 shares the signaling pathway with RIG-I, both pattern recognition receptors (PRRs) discriminate between ligands, allowing RE to sense many respiratory viruses and activate the innate immune response to these agents.

The interaction of the caspase recruitment domain (CARD) with the adaptor protein IPS-1, MAVS, VISA, or Cardif will activate protein kinases that phosphorylate the transcription factor IRF-3, leading to the synthesis of type I and type III IFN. Activation of RIG-I and MDA-5 by the respiratory virus genome leads to IFN and inflammatory cytokines production.

Cytokines and Others Molecules Produced by RE in Response to a Viral Infection

Respiratory mucus contains IgA, lysozyme, cytokines, type I IFN, lactoferrin, human beta-defensins (hBDs), nitric oxide (NO), and other peptides with antimicrobial activity. There is evidence that HRV, IAV, and RSV induce the production of mucus by activation of proinflammatory signaling pathways. Lactoferrin has antiviral activity against HRV through two mechanisms: (1) blocking cellular receptors and (2) binding to the viral particles. NO inhibits HRV replication and in IAV inhibits neuraminidase function. The RE produces type I-IFN and type III-IFN, these induce the expression of interferon-stimulated genes (ISGs) in cells.

Type I-IFN receptors are expressed by all cells and type III-IFN receptors are expressed in the RE. The signaling pathways are common; both use JAK-kinase and the phosphorylation of STAT1 and STAT2. The type III receptor is more specific and uses JAK1, JAK2, and TYK2. The activation of IRF1 and IRF7 is necessary for type I-IFN production. In the other hand, IRF1, IRF7, and NF-κB activation are necessary for type III-IFN production. For this reason, type III-IFN is delayed and has a later production and secretion.

The antiviral activation in RE occurs by the expression of ISGs, leading to antiviral protein production. The difference among the activation of ISGs is that type I-IFNs activate numerous ISGs, but type III-IFNs activates only a selected number of ISGs. The most important antiviral proteins (ISGs) induced by these IFNs are MxA, MxB, CH23H, IFITIM, and TRIM that affect viral entry. In the other hand, ISG15, UBE1L6, HERC5, HERC6, UBE1LA, TRIM25, and USP18 affect the viral translation and replication. Other ISGs proteins as viperin and tetherin interfere with the egress of the virus. The “ISGylation” is an antiviral mechanism that consists of a covalent union to a viral protein, modifying its electrical charge, leading to inactivation of the virus. Another ISG antiviral
mechanism is due to the decrease of the pH in the lysosome, resulting in viral inactivation81. It has been demonstrated that ISG15 has IAV antiviral effect after binding with the NS1 protein90. However, this effect has not been observed with HRV91.

It has been demonstrated \textit{in vitro} that the presence of type III-IFN reduces viral tilters and the proinflammatory cytokines, but the same expression of antiviral ISGs occurs compared to the stimulus induced by type I-IFN92-94. Type III-IFN induces a more limited expression of proinflammatory cytokines, avoiding the cytokine storm, preventing tissue damage, and severe complications65,96.

The importance of type III-IFN is such that it is being probed as a potential therapeutic target for influenza infection. Type III-IFN has been tested as an adjuvant in influenza vaccine with promising results since anti-IAV immunity is prolonged97,98. Type III-IFN is predominant in IAV infection99; its clinical relevance demands more studies in other respiratory viruses and coinfections.

The inflammasome is a signaling complex composed of Nod-like receptor (NLR), an adaptor apoptotic speck containing protein with a CARD (ASC) and procaspase-1100,101. This signaling complex processes pro-IL1ß and IL-18 into their secreted forms102. Activation of NLRP3 and production of IL-1ß has been demonstrated in RE in response to an IAV infection103,104, however, there is controversy whether NLRP3 acts directly as a PRR for viral RNA, or if it is activated by another PRR signaling pathway100.

RE as a Therapeutic Target in Respiratory Viral Infections

RE is a potential therapeutic target to prime the immune system even to induce systemic protection through mucosal vaccination against viral agents105-107. The use of type III-IFN is a potential therapy for influenza infection when IAV has developed antiviral drug resistance108-110. RE, dendritic, and macrophages cells have been used as a target for respiratory immunization and proven to be effective and less invasive105,106,111,112. An example of mucosal vaccination against RSV, IAV, as well as EV has been published107,113-115.

Respiratory Viruses Exacerbate Chronic Respiratory Conditions

Viral infections exacerbate chronic respiratory conditions such as asthma (38) and chronic obstructive pulmonary disease (COPD)116. These chronic conditions are characterized by mucus overproduction induced by TH2 and proinflammatory cytokines117-120. The type II immune response tends to diminish mucus production (88), but in patients with chronic respiratory conditions stimulates overproduction of mucus (42).

There are many proteins and antimicrobial molecules present in the airway1. The most remarkable is mucus, which creates a semipermeable barrier that traps viral particles and other agents preventing the infection120. Respiratory viruses’ infection that alters mucus clearance also induces mucus stasis, contributing to inflammation, and exacerbation of the underlying conditions121-123.

MUC5AC and MUC5B are proteins present in human sputum and related to chronic inflammatory conditions66,124,125. It has been demonstrated that HRV16 and RSV increase MUC5AC production in human RE and experimental models, respectively68,126, exacerbating the chronic inflammatory condition.

Respiratory Virome and Its Interactions with the Immune System

The interaction between mammalian and microbiota defines the physiological mechanisms of homeostasis27,128. Microbiota includes virome where the presences of numerous viral particles have been described in different tissues, life stages, host, and environmental conditions129,130. The virome changes through human lifetime129,131, environmental130,132, and internal conditions133. The virome modulates the immune response, promoting the production of cytokines that promote inflammation, anti-inflammation, or regulation127,134. The RE virome has been little studied135. HRV and IAV were found in nasal lavages as part of the virome in healthy subjects135,137. This finding proves that the immune response to viral particles depends on the equilibrium between microbiota/virome, internal, and environmental conditions127,134. HRV is present in URT after disease resolution, as demonstrated in a study performed in a published study137. The presence of certain viral particles modulates the immune response and leads to different clinical manifestations in chronic diseases38-140.

Conclusion

We conclude that RE is an active barrier of the innate immune system with the capacity to sense and initiate an immune response against infections by respiratory viruses. The study of the different responses of the RE
to respiratory viruses is of interest due to the clinical impact of such diseases. The viral coinfection may
determine the severity of the disease. Type III-IFN is a
potential therapy in respiratory viral infections and may
lead to a better outcome of severe disease. The cyto-
kine microenvironment is important because it deter-
mines which viruses the individual is more susceptible
too. The virome may also determine the immune re-
sponse to different respiratory virus infections.

Ethical disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed
on humans or animals for this study.

Confidentiality of data. The authors declare that no patient data appear in this article.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

Funding

DRM receive a Ph.D. Scholarship by Consejo Na-
Cional de Ciencia y Tecnología (CONACYT), and ART is
funded by CONACYT project number 253330.

Conflict of interest

The authors declare that they have no competing
interests.

References

2. Vareille M, Kieninger E, Edwards MP, Regamey N. The airway epithe-
3. Whitsett JA, Aalergaat T. Respiratory epithelial cells orchestrate pulmo-

5. Lopez-Souza N, Favorato S, Wong H, et al. In vitro susceptibility to rhi-
navirus infection is greater for bronchial than for nasal airway epithelial
7. Eccles R. Understanding the symptoms of the common cold and influen-
8. Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence,
prevalence, and years lived with disability for 301 acute and chronic di-
seases and injuries in 188 countries, 1990–2013: a systematic analysis for
the global burden of disease study 2013. Lancet. 2015;386:743-800.
10. Martin ET, Fairchok MP, Stednick ZJ, Kuypers J, Englund JA. Epidemi-
ruses in adults with acute respiratory tract infections in beijing, 2005-
14. Openshaw PJ, Tregoning JS. Immune responses and disease enhance-
15. Arakalle KA, Loke KS, Araya RP, et al. Role of host immune response and
viral load in the differential outcome of pandemic H1N1 (200) influen-
17. Piedra FA, Mei M, Avadhulanka V, et al. The interdependencies of viral
load, the innate immune response, and clinical outcome in children pre-
senting to the emergency department with respiratory syncytial virus-as-
18. Tanner H, Boxall E, Osman H. Respiratory viral infections during the
2009-2010 winter season in central England, UK: incidence and patterns
causative agents of severe acute respiratory tract infections in children.
21. Debiaggi M, Canduccio F, Ceresola ER, Clementi M. The role of infections
and coinfections with newly identified and emerging respiratory viruses in
22. Martin ET, Kuypers J, Wald A, Englund JA. Multiple versus single virus
respiratory infections: viral load and clinical disease severity in hospitali-
23. Martinez-Rego A, Salvado M, Caballero-Rabasco MA, et al. Viral coinfe-
24. Leyer GU, Li S, Mubasher ME, Reifler C, Ouwehand AC. Probiotic effects
on cold and influenza-like symptom incidence and duration in children.
25. Prescott SL, Bjorksten B. Probiotics for the prevention or treatment of
probability of viral co-detection during acute respiratory tract infections? J
analysis of influenza-like illness in new york city, may 2009 through may
activates TLR3-dependent inflammatory and RIG-I-dependent antiviral
tory pathogens and co-infections with disease severity in children hospi-
coinfection in children hospitalized with acute respiratory tract infection
32. Nascimento MS, Souza AV, Ferreira AV, et al. High rate of viral identifi-
33. Othumpangat S, Noti JD, McMillen CM, Beezhold DH. ICAM-1 regulates
the survival of influenza virus in lung epithelial cells during the early
35. Kennedy JL, Turner RB, Braciale TJ, Heymann PW, Borish L. Pathoge-

36. Nagata N, Iwata-Yoshikawa N, Taguchi F. Studies of severe acute res-
piratory syndrome coronavirus pathology in human cases and animal
37. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respira-
38. Yoshikawa T, HilT L, Kita K, Peters CJ, Tseng CT. Severe acute respira-
tory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacer-
bate SARS pathogenesis by modulating intrinsic functions of mono-
39. Bochkov YA, Gem JE. Rhinoviruses and their receptors: implications for

101. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome re-
cognition of influenza virus is essential for adaptive immune responses.

102. Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in

103. Kuriakose T, Kanneganti TD. Regulation and functions of NLRP3
inflammasome during influenza virus infection. Mol Immunol. 2017;
86:56-64.

104. Thomas PG, Dash P, Aldridge JR Jr., et al. The intracellular sensor
NLRP3 mediates key innate and healing responses to influenza A virus
via the regulation of caspase-1. Immunity. 2009;30:566-75.

105. Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M.
Mucosal vaccines: a paradigm shift in the development of mucosal adju-

106. Kim SH, Jang YS. The development of mucosal vaccines for both mucu-
al and systemic immune induction and the roles played by adjuvants.

107. Herremans TM, Reimerink JH, Buisman AM, Kimman TG, Koopmans MP.
Induction of mucosal immunity by inactivated poliovirus vaccine is depen-
dent on previous mucosal contact with live virus. J Immunol. 1999;
162:5011-8.

108. Donnelly RP, Kottenko SV. Interferon-lambda: a new addition to an old

preventing and treating influenza in healthy adults and children. Cough-

111. Kurono Y, Miyashita K, Makise T, Nagao H. Diversity of mucosal immu-
ne responses in upper respiratory organs and its application for mucosal

112. Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody

CTA1-D0 and ISCOMS adjuvant vector for effective mucosal immuniza-

114. Pedersen G, Cox R. The mucosal vaccine quandary: intranasal vs. sub-
lingual immunization against influenza. Hum vaccin immunother
2012;9:889-93.

115. Shafique M, Wilksch J, de Haan A. Induction of mucosal and systemic
immunity against respiratory syncytial virus by inactivated virus su-

human parafluenza virus type 3 in an in vitro model of human airway

Detection of rhinovirus in induced sputum at exacerbation of chronic

118. Yoshikawa T, Hill TE, Yoshikawa N, et al. Dynamic innate immune re-
pONSES of human bronchial epithelial cells to severe acute respiratory

119. Seh S, Zheng J, Mk D. Induction of mucin secretion from human bronchial
tissue and epithelial cells by rhinovirus and lipopolysaccharide. Acta

121. Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut
microbiota throughout life, with an emphasis on early life. Microb Ecol
Health Dis. 2015;26:26050.

sity in respiratory samples from children with severe acute respiratory

123. Wylie KM, Mhindukaikutuya KA, Sodergren E, Weinstock GM, Storch GA.
Sequence analysis of the human virome in febrile and afe-

tract DNA viral communities in cystic fibrosis and non-cystic fibrosis in-

125. Wilkner D, Furlan M, Haynes M, et al. Case studies of the spatial hete-
rogenenity of DNA viruses in the cystic fibrosis lung. Am J Respir Cell Mol

126. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflam-

microbiome in patients with sever lower respiratory tract infections, using

128. Yang J, Yang F, Ren L, et al. Unbiased parallel detection of viral patho-
gens in clinical samples by use of a metagenomic approach. J Clin Mi-

129. Jarti T, Lehtinen P, Vuorinen T, Koskinen M, Ruuskanen O. Persisten-
ce of rhinovirus and enterovirus RNA after acute respiratory illness in

130. Mitchell AB, Oliver BG, Granville AR. Translational aspects of the human

2009;138:30-50.

blooms of anelloviruses in the respiratory tract of lung transplant recipi-