Differential diagnosis of thrombocytopenia in pregnancy

Cesar H. Gutiérrez-Aguirre* and Alejandra C. Esparza-Sandoval
Hematology Service “Dr. Jose Eleuterio Gonzalez” University Hospital, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico

Abstract
Thrombocytopenia is encountered in 7-12% of all pregnancies and is the second most common abnormality of the complete blood count after anemia. The most important causes of thrombocytopenia during pregnancy are gestational thrombocytopenia, accounting for 60-75% of the cases, which usually poses no risk to either the mother or the product and no treatment is necessary. Furthermore, thrombocytopenia associated with pre-eclampsia, eclampsia, or hemolysis, elevated liver enzymes, and low platelet syndrome in 21% of the cases, which needs to be detected early due to the urgent medical attention required since the definitive treatment is the delivery of the fetus, and immune thrombocytopenia (ITP) in 3-10% that has a more severe presentation and can trigger maternal and neonatal complications. The differential diagnosis of the thrombocytopenia is highly important, as the complications and required treatment vary from one disease to another, and necessary to improve maternal and neonatal prognosis.

Key words: Thrombocytopenia. Pregnancy. Pre-eclampsia. Hemolysis, elevated liver enzymes, and low platelet syndrome. Gestational.

Introduction
Platelets are of significant importance in the formation of thrombus since they begin the primary hemostasis. Normal platelet count values range between 150,000/µl and 450,000/µl. Thrombocytopenia is defined as a platelet count lower than 150,000/µl, classified as mild when the platelet count is between 100,000 and 150,000/µl, moderate when it is between 50,000/µl and 100,000/µl, and severe when the count is below 50,000/µl. Thrombocytopenia is considered clinically significant when the platelet count is lower than 100,000/µl; furthermore, spontaneous bleeding may occur when the count is lower than 30,000/µl. Nevertheless, even with a normal or close-to-normal platelet count, if there is a quick descent of more than 50%, the cause ought to be investigated.

Thrombocytopenia can occur through different mechanisms such as the lowering of platelet production, an increase in their destruction or other causes such as splenic sequestration or dilution (Table 1). Regardless of the cause, thrombocytopenia can be found in between 7% and 12% of pregnant patients. Thrombocytopenia is the second most frequent anomaly in a complete blood cell count during pregnancy, after anemia. Approximately 8% of women can develop mild thrombocytopenia (100,000/µl-150,000/µl) during pregnancy, from which 65% will not have a precipitating pathology. Nevertheless, in all patients with a platelet count under 100,000/µl, the cause, which may or may not be linked to pregnancy, ought to be found (Table 2).

In general, the most frequent causes of thrombocytopenia during pregnancy are gestational thrombocytopenia (GT) which accounts for 60-75% of...
cases, thrombocytopenia linked to pre-eclampsia/ eclampsia/hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome in 21% of cases and immune thrombocytopenic purpura (ITP) in 3-10% of the cases, although the latter is not exclusive to pregnancy9. Each one has clinical characteristics which are useful in making a correct differential diagnosis (Table 3).

When we talk about moderate-to-severe thrombocytopenia, ITP is the most frequent cause (42%) followed by GT (9%) and pre-eclampsia (2%), as proven in a recent study10.

The diagnostic approach is performed under the context of a pregnant patient with bleeding manifestations on the skin and/or mucous membrane, even though in many of the cases, there are not bleeding manifestations, and the thrombocytopenia is a laboratory finding. It is necessary to conduct a complete blood count and a peripheral blood smear to analyze platelet count and morphology, which will need to be complemented with personal background and family history to guide the etiology of thrombocytopenia11. It is necessary to keep in mind that thrombocytopenia found in pregnancy is not always linked to it, as observed in GT and thrombocytopenia linked to pre-eclampsia/HELLP, or to fatty liver during pregnancy, but it could also be a manifestation of other illnesses such as ITP, thrombotic thrombocytopenic purpura, antiphospholipid syndrome, erythematous lupus, and sepsis, so it is necessary to perform an integral differential diagnosis based on clinical and laboratory data since treatment and prognosis are completely different.

GT

GT is considered a physiological decrease in platelet count during pregnancy that occurs without complications12. Its etiology is not known with precision. However, different mechanisms have been proposed, like plasma dilution caused by an increase in volume, antibody-mediated platelet destruction, or a decrease in platelet production13. GT is defined as a number of platelets under 150,000/µl in non-complicated pregnancies without any other identifiable causes of thrombocytopenia7. It is the most frequent cause of thrombocytopenia in pregnancy, occurring in 5-8% of all pregnancies9. In 75% of cases, platelet count is between 130,000/µl and 150,000/µl; only in 10% of cases is the count below 100,000/µl10. It usually has a favorable prognosis without maternal or fetal complications14.

To establish a GT diagnosis, it is necessary to have mild thrombocytopenia, typically in the third trimester of pregnancy, without a history of previous thrombocytopenia and resolution in a week or two after term14. The need for treatment in these patients has not been proven. A platelet count > 100,000/µl is considered safe

<table>
<thead>
<tr>
<th>Table 1. Causes of thrombocytopenia according to its etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease in production</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Aplastic anemia</td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td>Myelodysplasia</td>
</tr>
<tr>
<td>Acute leukemias</td>
</tr>
<tr>
<td>Chemotherapy</td>
</tr>
<tr>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>Viral infections</td>
</tr>
<tr>
<td>Renal disease</td>
</tr>
<tr>
<td>Vitamin B12 deficiency</td>
</tr>
<tr>
<td>Folic acid deficiency</td>
</tr>
<tr>
<td>Autoimmune diseases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Causes of thrombocytopenia based on its association with pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated with pregnancy</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Gestational thrombocytopenia</td>
</tr>
<tr>
<td>HELLP syndrome</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
</tr>
<tr>
<td>Fatty liver of pregnancy</td>
</tr>
</tbody>
</table>

to apply spinal anesthesia8, and some authors even reported a count between 50,000/µl and 80,000/µl as a safe number15. A study conducted in 1993 that included 756 patients with GT showed that none of the patients had a hemorrhagic complication, and none of the newborns had platelet numbers under 100,000/µl or a hemorrhagic complication16.

In some cases, it may be difficult to differentiate GT from ITP due to the fact that in GT, thrombocytopenia may occasionally be detected in the first trimester and be lower than 100,000/µl. In these patients, the behavior of thrombocytopenia ought to be monitored during pregnancy and postpartum evolution17.

Immune thrombocytopenic purpura

In chronic IPT, thrombocytopenia results from a combination of two mechanisms, accelerated platelet destruction and an insufficient compensatory production in the bone marrow. This disease is caused by the formation of IgG antibodies against the plasma membrane glycoproteins. A platelet count under 100,000/µl during the first trimester of pregnancy with a progressive decrease is indicative of ITP3. It is important to establish a diagnosis and differentiate it from other types of thrombocytopenia like GT since ITP does elevate the risk of maternal and fetal bleeding. Since the IgG antibodies have the ability to cross the placenta, the product may present thrombocytopenia under 100,000/µl in 15-50% of cases, under 50,000/µl in 8-30% of cases, and under 20,000/µl in 1-8% of cases3,18, as well as presenting an intracranial hemorrhage in up to 2%8,18.

The most important factor in establishing a diagnosis is a background of thrombocytopenia or a history of bleeding (petechiae, ecchymosis, epistaxis, and gingivorrhagia) before pregnancy or during the 1st week of gestation; even though in many cases, the ITP diagnosis is already known before pregnancy8.

Patients who already have a chronic ITP diagnosis and are in complete remission ought to be closely monitored, considering that there could be relapsed with severe bleeding13. Women without abnormal bleeding or a platelet count > 30,000/µl have not been proven to require any treatment, especially during the 1st week of gestation. In case they require treatment, the first line is oral steroids and intravenous immunoglobulin (IgIV)20. The American Society of Hematology recommends administering treatment in cases of severe thrombocytopenia or thrombocytopenia with the presence of abnormal bleeding21. Recommendations suggest beginning steroids at a dose of 1 mg/kg of prednisone or prednisolone until reaching a safe number of platelets (30,000/µl). Nevertheless, it is necessary to remain alert since the frequency of adverse effects caused by steroids is more significant during pregnancy. When the expected response with steroids is not obtained, or the physician prefers to avoid its adverse effects, a dose of 2 g/kg/day of IgIV can be administered over 2-5 days, but its effects are usually transitory, lasting from 1 to 4 weeks. This option is of great help when the term of the pregnancy is close to avoid obstetric bleeding8. Between 31% and 49% of patients with ITP need to receive treatment with glucocorticoids or IgIV during or after pregnancy22,23.

Splenectomy should be reserved for severe refractory ITP and ought to be performed during the second trimester of pregnancy24,25. In a study conducted recently, we were able to observe that postpartum hemorrhage complications occur with more frequency in women with a diagnosis of ITP than in women who course a normal pregnancy. Furthermore, postpartum hemorrhage was greater in women who required treatment for ITP than those who did not. On the other hand, the incidence of neonatal thrombocytopenia in children of mothers diagnosed with ITP was 12%26. In a different study from 1993, results show that those newborns who suffered morbidity and mortality as a result of thrombocytopenia were products of mothers with a diagnosis of ITP16. Due to a greater incidence of thrombocytopenia in newborns of mothers with an ITP diagnosis, routinely measuring the platelet count on the umbilical cord is

<table>
<thead>
<tr>
<th>Table 3. Characteristics of thrombocytopenia according to its etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational thrombocytopenia</td>
</tr>
<tr>
<td>Trimester of pregnancy</td>
</tr>
<tr>
<td>Degree of thrombocytopenia</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
</tbody>
</table>
Thrombocytopenia linked to hypertensive pregnancy disorder, pre-eclampsia, and HELLP syndrome

Pre-eclampsia is characterized by the presence of high blood pressure, proteinuria, and edema in the extremities. It occurs in 5-8% of the world’s population and remains as one of the main causes of maternal and fetal morbidity/mortality, even in developed countries. It occurs more frequently in women who are in their first pregnancy, women who are under 20 years of age or older than 30, with obesity, chronic hypertension, and a history of resistance to insulin.

The HELLP syndrome is a pregnancy complication which compromises the life of both the mother and the fetus. It is usually observed in patients with severe pre-eclampsia. However, it may also occur without it. First described in 1982 by Weinstein, who called it the HELLP syndrome as an acronym of hemolysis (H), elevated liver enzymes (EL) and low platelet count (LP). It affects between 0.5 and 0.9% of all pregnancies and up to 20% of complicated pregnancies with severe pre-eclampsia. Of the women who course their pregnancy with pre-eclampsia, between 15% and 50% develop thrombocytopenia, while those patients who develop HELLP syndrome, on top of a platelet count of <150,000/µl, generally also present elevation of hepatic enzymes and the presence of microangiopathic hemolytic anemia.

Definite treatment for these illnesses is the termination of pregnancy. Before 34 weeks of gestation, support treatment is provided to stabilize patients and allow pulmonary maturation of the product using two doses of betamethasone. In those patients in which a C-section is required, transfusions of platelet concentrates can be used to reach a safe number immediately before the procedure, even though the half-life of transfused platelets is diminished in women with these illnesses.

Reports suggest the possibility of performing a fresh frozen plasma transfusion to treat those patients complicated with disseminated intravascular coagulation, and steroids for patients with prolonged thrombocytopenia, an increase in lactic dehydrogenase and post-partum multiorgan dysfunction.

ITP and hypertensive pregnancy disorders are the main maternal risk factor for the development of neonatal thrombocytopenia.

Conclusion

Thrombocytopenia during pregnancy results from diverse causes, which may or may not be linked to pregnancy. It is important to establish a proper diagnosis to administer timely treatment, improving maternal and neonatal prognosis. In most cases, GT does not require treatment and has a benign evolution for the mother and the baby; on the other hand, ITP usually courses with more severe thrombocytopenia, requiring treatment in up to 49% of patients, and is linked to a greater morbidity-mortality index in both the mother and the fetus. Thrombocytopenia caused by hypertensive pregnancy disorders requires urgent medical attention; its definite treatment is the termination of the pregnancy.

Conflicts of interest

The authors declare no conflicts of interest.

Financing

The preparation of this article did not require financing.

Ethical disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data. The authors declare that no patient data appear in this article.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

References

